
A Traffic Forecasting Modle Using Adaptive 
BMO Algorithm Trained Neural Network  

Hou-ju SUN 1,a,*, Shi-da YANG 1,b 
1
 Intelligent Computing Labs, Wuhan University of Technology, Luo Nan street, Wuhan, China 

a sunhouju@163.com, b yang999sd@126.com 
*corresponding author 

Keywords: Traffic flow prediction, BP neural network, BMO algorithm, adaptive 
parameter. 

Abstract. Aiming at the short-comings of existing short-term traffic flow forecasting 
methods, such as low precision, Model is too complex and large computational cost, an 
adaptive BMO algorithm optimized BP neural network （BMOA-NN） algorithm is 
proposed. The algorithm improves the traditional BMO algorithm by introducing adaptive 
mechanism, The dynamic adjustment of the grouping parameters of the algorithm 
according to the variance of fitness, make the balance between local search and global 
search ability; Modeling the short-term traffic flow problem, The simulation model of the 
algorithm is realized, and the precision of the calculation is improved and the complexity of 
the calculation is reduced. The experimental results show that the proposed model can 
reduce the prediction error by 18.2% ~ 23.7% in the same time. 

1. Introduction  

In recent years, the intelligent transportation system has made great progress, but the short-term 
traffic flow forecast as a bottleneck of urban transportation network is characterized by high 
dynamic, uncertainty, non-linearity, cyclicality and spatial correlation. Need to continue to explore 
more accurate predictive models For the short-term traffic flow forecasting, domestic and foreign 
experts and scholars have adopted the linear theory method (historical average model [1], time series 
model[2], state space model[3]); nonlinear theory method (neural network prediction model[4], 
nonparametric regression prediction model[5], support vector machine regression prediction model); 
mixed theory method (KARIMA[7], ATHENA [8], unit neural network model [9], fuzzy neural 
network model[10]) and simulation model theory. In the above method, the prediction of short-term 
traffic flow is not adaptive and the robustness is low. Some scholars have used the intelligent 
algorithm to optimize the BP (Back Propagation) neural network[11], and the short-term traffic flow 
prediction model (genetic neural network Model[12], improved particle swarm optimization 
algorithm based on BP neural network model[13]), with the help of the global search capability of 
intelligent algorithms and the feedback mechanism of BP neural network, the prediction model has 
good real-time and self- The intelligent algorithm adopted by the model lacks the concept of 
grouping, can not achieve the balance between global search and local optimization, resulting in the 
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Where tpi is the desired output value; Opi is the actual output value. 
(4) self-learning model 
The self-learning process of BP neural network is to automatically correct the process of 

connecting the weight matrix Wij between the lower node and the upper node. The self-learning 
model is expressed as: 

∆Wijሺ݊ ൅ 1ሻ ൌ ݄ ൈ ∅݅ ൈ ܱ݆ ൅ ܽ ൈ ∆ܹ݆݅ሺ݊ሻ  (7) 

3. BMO Algorithm and Its Improvement 

3.1. BMO Algorithm 

The BMO algorithm originated from the observation of the use of high quality gene reproduction 
in birds and has been widely used in many fields[16]. The basic method is to abstract the problem 
so that it can be represented by a code to represent a solution to the problem. The algorithm first 
randomly generates a certain number of codes to represent the initial population, and classifies all 
the codes into male and female according to the degree of fitness of the fitness function, where the 
female is a better coding. The algorithm is divided into four types of iterations: one-sex breeding, 
monogamy, polygamy and promiscuity. Each code is treated as a vector, with Ԧܺ to represent the 
male, ܺపሬሬሬሬԦ to represent the female, ܺ௕ሬሬሬሬԦ is the new individual, ω is the weight factor with time, ݎԦ is 
the 1 × n vector, each component evaluates to a random number in [0,1], n is the dimension of the 
problem, mcf is the mutation control factor, ݎ௜ is the random number in [0,1], u and l is the upper 
and lower bounds of the problem. 

(1) sexual reproduction can be expressed as: 
if   ݎଵ ൏ ݂݉ܿ： 

 ܺ௕ሬሬሬሬԦ ൌ ܺపሬሬሬሬԦ െ ߤ ൈ ሺݎଶ െ ଷሻݎ ൈ ܺపሬሬሬሬԦ (9)

then  ܺ௕ሬሬሬሬԦ ൌ ܺపሬሬሬሬԦ 

(2) monogamous can be expressed as: 
if  ݎଵ ൐ ݂݉ܿ： 

 ܺ௕ሬሬሬሬԦ ൌ Ԧܺ ൅ ߱ ൈ Ԧݎ ൈ ൫ܺపሬሬሬሬԦ െ Ԧܺ൯ (1)

then 

 ܺ௕ሬሬሬሬԦሺܿሻ ൌ ݈ሺܿሻ ൈ ଶݎ ൈ ൫݈ሺܿሻ െ  ሺܿሻ൯ (2)ݑ

(3) In true nature, polygamy is usually a male and many females mating breeding to produce a 
group of offspring individuals, but in the BMO algorithm for the convenience of research, we 
believe that such a male and more females Mating only produces a single offspring. So polygamily 
expressed as: 

if   ݎଵ ൐ ݂݉ܿ： 

 ܺ௕ሬሬሬሬԦ ൌ Ԧܺ ൅ ߱ ൈ෍ݎఫሬሬԦ ൈ ቀ ఫܺ
పሬሬሬሬሬԦ െ Ԧܺቁ （12）

then    

 ܺ௕ሬሬሬሬԦሺܿሻ ൌ ݈ሺܿሻ െ ଶݎ ൈ ൫݈ሺܿሻ െ ሺܿሻ൯ （13）ݑ

(4) Promiscuous refers to the male and female has no fixed husband and wife relationship, so the 
model has a great random, so in the BMO algorithm, we directly through the coding rules to 
re-generate some of the individuals. 
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3.2. Improved BMO algorithm 

In order to better solve the practical problems, many intelligent algorithms have been improved 
to the adaptive algorithm[17] to optimize the performance of the algorithm. Since the BMO 
algorithm has four breeding types, each type has a parameter to represent the proportion of the 
population of that type, and a control factor to control the probability of occurrence of propagation. 
We first analyze the four types of functions in the algorithm, and then discuss how to set the 
adaptive function. First of all, the entry into the Sexual reproduction group is the best individual in 
the whole population, each individual is not affected by other individuals, refused to obtain 
diversity from other individuals, to keep the gene not to be degraded, so unisexual Breeding has an 
elite retention effect. Monogamous grouping is the most common way of breeding birds, because 
this breeding method can make the individual to obtain a certain diversity, but also to ensure the 
stability of their own genes, it is BMO algorithm stability protection. Polygamous grouping to adopt 
multi-partner breeding methods, in the algorithm, progeny individuals obtain genes from multiple 
parent individuals, so that their descendants can obtain great diversity. However, this breeding 
method is not stable, may produce poor individuals, but this group can avoid the algorithm into a 
precocious. In the algorithm, we usually remove the individuals in the abortion group directly, and 
then re-randomly generate the same number of individuals. 

Control factor: 

 mcfሺ݊ ൅ 1ሻ ൌ
൫݂ሺ݊ݔܽܯ െ 1ሻ൯

൫݂ሺ݊ሻ൯ݔܽܯ
mcfሺ݊ሻ （14） 

Where	fሺ݊ሻ is the evaluation function of the BMO algorithm, Max൫݂ሺ݊ሻ൯ is the maximum 
fitness value for all individuals in the nth generation population, and the initial value of mcf is 1. 

We use the fitness variance to dynamically determine the proportion of the population of each 
group. Assuming that the number of individuals of single-sex reproduction and monogamy group is 
n, fi is the fitness value of the i-th individual, favg is the average fitness value of these individuals, 
 :ଶ can be defined asߪ ,ଶ is the fitness variance of these individualsߪ

ଶߪ  ൌ෍ቆ
௜݂ െ ௔݂௩௚

ߤ
ቇ
ଶ௡

௜ୀଵ

 （15） 

Where μ is the normalized scaling factor, its function is to limit the size of ߪଶ, μ can take any 

value, but it is necessary to ensure that the absolute value of 
௙೔ି௙ೌ ೡ೒

ఓ
 is not more than 1, and μ is 

also the same as the iterative process Gradually change the value of μ can be used as follows: 

μ ൌ ቊ݉ܽݔ ቚห ௜݂ െ ௔݂௩௚หቚ，max ቚห ௜݂ െ ௔݂௩௚หቚ ൐ 1

ݏݎℎ݁ݐ݋，1
 （16） 

The variance ߪଶ of the fitness value reflects the degree of convergence of the two groups. The 
smaller the ߪଶ, the more the convergence is, in this case, the number of individuals in the group of 
parthenogenetic groups and monogamous groups should be reduced, and the number of individuals 
in polygamous group and overdue groups should be increased, 

The Polygamous group: 
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5. Conclusion 

In this paper, an adaptive parameter improvement based on fitness variance is proposed for the 
parameter setting of BMO algorithm, which makes the improved BMO algorithm have better 
performance. The improved BMO algorithm is applied to the training of BP neural networks for 
short - term traffic flow prediction, and the BMOA - NN model is proposed. After the simulation 
experiment, the prediction results are evaluated by a variety of error evaluation criteria. It is found 
that the prediction results of the BMOA - NN model are more accurate and robust than the other 
three models, and can provide more accurate and accurate prediction for traffic guidance and traffic 
control. 
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